Explaining exhaustivity in terms of Attentional Quantity

Matthijs Westera

Institute for Logic, Language and Computation University of Amsterdam

Logic in Language and Conversation, Utrecht, Sept. 2016

(1) Q: Who (of John, Mary and Bill) was at the party?
A: John. (Exh.: not Mary, not Bill)

(1) Q: Who (of John, Mary and Bill) was at the party?
A: John. (Exh.: not Mary, not Bill)

An intuitive account:

- A must not consider it possible that Mary and Bill were there;
- otherwise A would have mentioned the possibility

(1) Q: Who (of John, Mary and Bill) was at the party?
A: John. (Exh.: not Mary, not Bill)

An intuitive account:

- A must not consider it possible that Mary and Bill were there;
- otherwise A would have mentioned the possibility

- Speaker A must believe that Mary and Bill weren't there;
- otherwise A would have said that they were.

(1) Q: Who (of John, Mary and Bill) was at the party?
A: John. (Exh.: not Mary, not Bill)

An intuitive account:

- A must not consider it possible that Mary and Bill were there;
- otherwise A would have mentioned the possibility

- Speaker A must believe that Mary and Bill weren't there;
- otherwise A would have said that they were.

(1) Q: Who (of John, Mary and Bill) was at the party?
A: John. (Exh.: not Mary, not Bill)

An intuitive account:

- A must not consider it possible that Mary and Bill were there;
- otherwise A would have mentioned the possibility

- Speaker A must believe that Mary and Bill weren't there;
- otherwise A would have said that they were.
 Quantity: assert all relevant truths.

(1) Q: Who (of John, Mary and Bill) was at the party?
A: John. (Exh.: not Mary, not Bill)

An intuitive account:

- A must not consider it possible that Mary and Bill were there;
- otherwise A would have mentioned the possibility

- Speaker A must believe that Mary and Bill weren't there;
- otherwise A would have said that they were.
 - **I-Quantity:** assert all relevant truths.

(1) Q: Who (of John, Mary and Bill) was at the party?
A: John. (Exh.: not Mary, not Bill)

An intuitive account:

- ▶ A must not consider it possible that Mary and Bill were there;
- otherwise A would have mentioned the possibility
 A-Quantity: draw attention to all relevant possibilities.

- Speaker A must believe that Mary and Bill weren't there;
- otherwise A would have said that they were.
 - **I-Quantity:** assert all relevant truths.

(1) Q: Who (of John, Mary and Bill) was at the party?
A: John. (Exh.: not Mary, not Bill)

An intuitive account:

- ▶ A must not consider it possible that Mary and Bill were there;
- otherwise A would have mentioned the possibility
 A-Quantity: draw attention to all relevant possibilities.

Cf. the "standard recipe":

- Speaker A must believe that Mary and Bill weren't there;
- otherwise A would have said that they were.
 - **I-Quantity:** assert all relevant truths.

Aims of this talk:

- discuss five serious problems for the standard recipe;
- show how the attention-based account easily solves them.

Standard recipe: for some relevant, non-asserted alternative φ :

 $ightharpoonup \neg \Box \varphi$ (maxim of I-Quantity)

Standard recipe: for some relevant, non-asserted alternative φ :

- ▶ $\neg \Box \varphi$ (maxim of I-Quantity)
- $\blacktriangleright \ \Box \varphi \lor \Box \neg \varphi \qquad \text{(competence/opinionatedness assumption)}$
- ▶ $\Box \neg \varphi$ (exhaustivity)

Problems:

A. Exh. without a competence assumption (Westera '13).

Standard recipe: for some relevant, non-asserted alternative φ :

- ▶ $\neg \Box \varphi$ (maxim of I-Quantity)
- $\blacktriangleright \ \Box \varphi \lor \Box \neg \varphi \qquad \text{(competence/opinionatedness assumption)}$
- ▶ $\Box \neg \varphi$ (exhaustivity)

Problems:

- A. Exh. without a competence assumption (Westera '13).
- B. Exh. without I-Quantity (Fox '14).

Standard recipe: for some relevant, non-asserted alternative φ :

- ▶ $\neg \Box \varphi$ (maxim of I-Quantity)
- $\blacktriangleright \ \Box \varphi \lor \Box \neg \varphi \qquad \text{(competence/opinionatedness assumption)}$
- ▶ $\Box \neg \varphi$ (exhaustivity)

Problems:

- A. Exh. without a competence assumption (Westera '13).
- B. Exh. without I-Quantity (Fox '14).
- C. The symmetry problem (e.g., Kroch 1972).

Standard recipe: for some relevant, non-asserted alternative φ :

- ▶ $\neg \Box \varphi$ (maxim of I-Quantity)
- ▶ $\Box \varphi \lor \Box \neg \varphi$ (competence/opinionatedness assumption)
- ▶ $\Box \neg \varphi$ (exhaustivity)

Problems:

- A. Exh. without a competence assumption (Westera '13).
- B. Exh. without I-Quantity (Fox '14).
- C. The symmetry problem (e.g., Kroch 1972).
- D. Exh. without informational intent (e.g., Biezma & Rawlins '12).

Standard recipe: for some relevant, non-asserted alternative φ :

- ▶ $\neg \Box \varphi$ (maxim of I-Quantity)
- ▶ $\Box \varphi \lor \Box \neg \varphi$ (competence/opinionatedness assumption)
- ▶ $\Box \neg \varphi$ (exhaustivity)

Problems:

- A. Exh. without a competence assumption (Westera '13).
- B. Exh. without I-Quantity (Fox '14).
- C. The symmetry problem (e.g., Kroch 1972).
- D. Exh. without informational intent (e.g., Biezma & Rawlins '12).
- E. Informationally equivalent utterances may yield different exh.

(e.g., Van Rooij & Schulz '06).

Standard recipe: for some relevant, non-asserted alternative φ :

- ▶ $\neg \Box \varphi$ (maxim of I-Quantity)
- ▶ $\Box \varphi \lor \Box \neg \varphi$ (competence/opinionatedness assumption)
- ▶ $\Box \neg \varphi$ (exhaustivity)

Problems:

- A. Exh. without a competence assumption (Westera '13).
- B. Exh. without I-Quantity (Fox '14).
- C. The symmetry problem (e.g., Kroch 1972).
- D. Exh. without informational intent (e.g., Biezma & Rawlins '12).
- E. Informationally equivalent utterances may yield different exh.

(e.g., Van Rooij & Schulz '06).

The new, A-Quantity-based account should solve these.

Standard recipe: for some relevant, non-asserted alternative φ :

- ▶ $\neg \Box \varphi$ (maxim of I-Quantity)
- ▶ $\Box \varphi \lor \Box \neg \varphi$ (competence/opinionatedness assumption)
- ▶ $\Box \neg \varphi$ (exhaustivity)

Problems:

- A. Exh. without a competence assumption (Westera '13).
- B. Exh. without I-Quantity (Fox '14).
- C. The symmetry problem (e.g., Kroch 1972).
- D. Exh. without informational intent (e.g., Biezma & Rawlins '12).
- E. Informationally equivalent utterances may yield different exh.

(e.g., Van Rooij & Schulz '06).

The new, A-Quantity-based account should solve these.

Standard recipe: for some relevant, non-asserted alternative φ :

- ▶ $\neg \Box \varphi$ (maxim of I-Quantity)
- ▶ $\Box \varphi \lor \Box \neg \varphi$ (competence/opinionatedness assumption)
- ▶ $\Box \neg \varphi$ (exhaustivity)

Problems:

- A. Exh. without a competence assumption (Westera '13).
- B. Exh. without I-Quantity (Fox '14).
- C. The symmetry problem (e.g., Kroch 1972).
- D. Exh. without informational intent (e.g., Biezma & Rawlins '12).
- E. Informationally equivalent utterances may yield different exh. (e.g., Van Rooij & Schulz '06).

The new, A-Quantity-based account should solve these.

Standard recipe: for some relevant, non-asserted alternative φ :

- ▶ $\neg \Box \varphi$ (maxim of I-Quantity)
- ▶ $\Box \varphi \lor \Box \neg \varphi$ (competence/opinionatedness assumption)
- ▶ $\Box \neg \varphi$ (exhaustivity)

Problems:

- A. Exh. without a competence assumption (Westera '13).
- B. Exh. without I-Quantity (Fox '14).
- C. The symmetry problem (e.g., Kroch 1972).
- D. Exh. without informational intent (e.g., Biezma & Rawlins '12).
- E. Informationally equivalent utterances may yield different exh.

(e.g., Van Rooij & Schulz '06).

The new, A-Quantity-based account should solve these.

This talk will not cover:

F. embedded exhaustivity (e.g., Chierchia et al. 2012).

Standard recipe: for some relevant, non-asserted alternative φ :

- ▶ $\neg \Box \varphi$ (maxim of I-Quantity)
- ▶ $\Box \varphi \lor \Box \neg \varphi$ (competence/opinionatedness assumption)
- ▶ $\Box \neg \varphi$ (exhaustivity)

Problems:

- A. Exh. without a competence assumption (Westera '13).
- B. Exh. without I-Quantity (Fox '14).
- C. The symmetry problem (e.g., Kroch 1972).
- D. Exh. without informational intent (e.g., Biezma & Rawlins '12).
- E. Informationally equivalent utterances may yield different exh.

(e.g., Van Rooij & Schulz '06).

The new, A-Quantity-based account should solve these.

This talk will not cover:

F. embedded exhaustivity (e.g., Chierchia et al. 2012).

Except insofar as problem E seems to involve embedded exh.

Outline

- 1. "Destructive" problems (A,B,C)
- 2. "Constructive" problems (D,E)
- 3. Formal, attention-based account

4. Discussion

Outline

- 1. "Destructive" problems (A,B,C)
- 2. "Constructive" problems (D,E)

- 3. Formal, attention-based account
- 4. Discussion

Purported evidence *for* reliance on competence assumption: (Soames 1982)

(2) Q: Who (of John, Mary and Bill) was at the party?
A: Not sure, but John was there... (no exh.)

Purported evidence *for* reliance on competence assumption: (Soames 1982)

(2) Q: Who (of John, Mary and Bill) was at the party?
A: Not sure, but John was there... (no exh.)

Experimental variants (Breheny et al. 2013, Goodman et al. 2013):

(3) (Instruction: A does not have complete knowledge about who was there.)

A: John was there.

(no/weaker exh.)

Purported evidence *for* reliance on competence assumption: (Soames 1982)

(2) Q: Who (of John, Mary and Bill) was at the party?
A: Not sure, but John was there... (no exh.)

Experimental variants (Breheny et al. 2013, Goodman et al. 2013):

(3) (Instruction: A does not have complete knowledge about who was there.)

A: John was there.

(no/weaker exh.)

Not convincing (Westera 2013). What they should have tested:

(4) Q: You may not know this, but who (of John, Mary and Bill) was at the party?

A: John and Mary.

(Exh.: Bill wasn't)

Purported evidence *for* reliance on competence assumption: (Soames 1982)

(2) Q: Who (of John, Mary and Bill) was at the party?
A: Not sure, but John was there... (no exh.)

Experimental variants (Breheny et al. 2013, Goodman et al. 2013):

(3) (Instruction: A does not have complete knowledge about who was there.)

A: John was there.

A: John and Mary.

(no/weaker exh.)

Not convincing (Westera 2013). What they should have tested:

(4) Q: You may not know this, but who (of John, Mary and Bill) was at the party?

(Exh.: Bill wasn't)

(Discussion?)

A quizmaster's hint (Fox 2014):

(5) There is money in box 20 or 25.

(Exh.: not both)

A quizmaster's hint (Fox 2014):

(5) There is money in box 20 or 25. (Exh.: not both)

Exhaustivity seems to be present:

(6) What you said was wrong. You said there was money in box 20 OR box 25, but in fact there was money in both boxes.

A quizmaster's hint (Fox 2014):

(5) There is money in box 20 or 25. (Exh.: not both)

Exhaustivity seems to be present:

(6) What you said was wrong. You said there was money in box 20 OR box 25, but in fact there was money in both boxes.

But ignorance implication due to I-Quantity is absent:

(7) # You haven't been completely honest. You said there was money in box 20 OR box 25, but in fact you knew where the money was.

A quizmaster's hint (Fox 2014):

(5) There is money in box 20 or 25. (Exh.: not both)

Exhaustivity seems to be present:

(6) What you said was wrong. You said there was money in box 20 OR box 25, but in fact there was money in both boxes.

But ignorance implication due to I-Quantity is absent:

(7) # You haven't been completely honest. You said there was money in box 20 OR box 25, but in fact you knew where the money was.

Outline of solution:

Quizmaster will pretend only to be less informed about the quiz;

A quizmaster's hint (Fox 2014):

(5) There is money in box 20 or 25. (Exh.: not both)

Exhaustivity seems to be present:

(6) What you said was wrong. You said there was money in box 20 OR box 25, but in fact there was money in both boxes.

But ignorance implication due to I-Quantity is absent:

(7) # You haven't been completely honest. You said there was money in box 20 OR box 25, but in fact you knew where the money was.

Outline of solution:

- Quizmaster will pretend only to be less informed about the quiz;
- hence the I-Quantity implication (¬□) can be pretense;

A quizmaster's hint (Fox 2014):

(5) There is money in box 20 or 25. (Exh.: not both)

Exhaustivity seems to be present:

(6) What you said was wrong. You said there was money in box 20 OR box 25, but in fact there was money in both boxes.

But ignorance implication due to I-Quantity is absent:

(7) # You haven't been completely honest. You said there was money in box 20 OR box 25, but in fact you knew where the money was.

Outline of solution:

- Quizmaster will pretend only to be less informed about the quiz;
- hence the I-Quantity implication (¬□) can be pretense;
- ▶ but exhaustivity $(\Box \neg)$ cannot be pretense.

A quizmaster's hint (Fox 2014):

(5) There is money in box 20 or 25. (Exh.: not both)

Exhaustivity seems to be present:

(6) What you said was wrong. You said there was money in box 20 OR box 25, but in fact there was money in both boxes.

But ignorance implication due to I-Quantity is absent:

(7) # You haven't been completely honest. You said there was money in box 20 OR box 25, but in fact you knew where the money was.

Outline of solution:

- Quizmaster will pretend only to be less informed about the quiz;
- hence the I-Quantity implication (¬□) can be pretense;
- ▶ but exhaustivity $(\Box \neg)$ cannot be pretense.

This works for *any* account of exh. that bypasses I-Quantity.

1.3. Problem C: The symmetry problem (1/2)

Kroch, 1972 (a.o.):

- ▶ If relevance is symmetrical (closed under negation),
- ▶ then I-Quantity will imply both $\neg \Box \varphi$ and $\neg \Box \neg \varphi$,

1.3. Problem C: The symmetry problem (1/2)

Kroch, 1972 (a.o.):

- If relevance is symmetrical (closed under negation),
- ▶ then I-Quantity will imply both $\neg \Box \varphi$ and $\neg \Box \neg \varphi$,
- ▶ and the latter contradicts exhaustivity $(\Box \neg \varphi)$.

1.3. Problem C: The symmetry problem (1/2)

Kroch, 1972 (a.o.):

- If relevance is symmetrical (closed under negation),
- ▶ then I-Quantity will imply both $\neg \Box \varphi$ and $\neg \Box \neg \varphi$,
- ▶ and the latter contradicts exhaustivity $(\Box \neg \varphi)$.

Is relevance *necessarily* symmetrical?

Kroch, 1972 (a.o.):

- If relevance is symmetrical (closed under negation),
- ▶ then I-Quantity will imply both $\neg \Box \varphi$ and $\neg \Box \neg \varphi$,
- ▶ and the latter contradicts exhaustivity $(\Box \neg \varphi)$.

Is relevance necessarily symmetrical?

 "That seems like a natural, hard-to-avoid assumption" (e.g., Chierchia et al. 2012);

Kroch, 1972 (a.o.):

- If relevance is symmetrical (closed under negation),
- ▶ then I-Quantity will imply both $\neg \Box \varphi$ and $\neg \Box \neg \varphi$,
- ▶ and the latter contradicts exhaustivity $(\Box \neg \varphi)$.

Is relevance necessarily symmetrical?

- "That seems like a natural, hard-to-avoid assumption" (e.g., Chierchia et al. 2012);
- "Of course not, why would it be?!" (e.g., Horn 1989, Leech 1981).

Kroch, 1972 (a.o.):

- If relevance is symmetrical (closed under negation),
- ▶ then I-Quantity will imply both $\neg \Box \varphi$ and $\neg \Box \neg \varphi$,
- ▶ and the latter contradicts exhaustivity ($\Box \neg \varphi$).

Is relevance necessarily symmetrical?

- "That seems like a natural, hard-to-avoid assumption" (e.g., Chierchia et al. 2012);
- "Of course not, why would it be?!" (e.g., Horn 1989, Leech 1981).
- (8) (A sees B confidently leave the house without an umbrella...)
 A: It's going to rain!

Kroch, 1972 (a.o.):

- If relevance is symmetrical (closed under negation),
- ▶ then I-Quantity will imply both $\neg \Box \varphi$ and $\neg \Box \neg \varphi$,
- ▶ and the latter contradicts exhaustivity $(\Box \neg \varphi)$.

Is relevance necessarily symmetrical?

- "That seems like a natural, hard-to-avoid assumption" (e.g., Chierchia et al. 2012);
- "Of course not, why would it be?!" (e.g., Horn 1989, Leech 1981).
- (8) (A sees B confidently leave the house without an umbrella...)
 A: It's going to rain!

A: It's not going to rain!

Kroch, 1972 (a.o.):

- If relevance is symmetrical (closed under negation),
- ▶ then I-Quantity will imply both $\neg \Box \varphi$ and $\neg \Box \neg \varphi$,
- ▶ and the latter contradicts exhaustivity $(\Box \neg \varphi)$.

Is relevance necessarily symmetrical?

- "That seems like a natural, hard-to-avoid assumption" (e.g., Chierchia et al. 2012);
- "Of course not, why would it be?!" (e.g., Horn 1989, Leech 1981).
- (8) (A sees B confidently leave the house without an umbrella...)

 A: It's going to rain!
 - ??? A: It's not going to rain!

Kroch, 1972 (a.o.):

- If relevance is symmetrical (closed under negation),
- ▶ then I-Quantity will imply both $\neg \Box \varphi$ and $\neg \Box \neg \varphi$,
- ▶ and the latter contradicts exhaustivity $(\Box \neg \varphi)$.

Is relevance necessarily symmetrical?

- "That seems like a natural, hard-to-avoid assumption" (e.g., Chierchia et al. 2012);
- "Of course not, why would it be?!" (e.g., Horn 1989, Leech 1981).
- (8) (A sees B confidently leave the house without an umbrella...)A: It's going to rain!??? A: It's not going to rain!

Given this, there may not even be a symmetry problem here:

(9) Q: Who (of John, Mary and Bill) was at the party? A: John and Mary.

(10) Q: I need to know (of these five people here) who was present and who was absent.

(10) Q: I need to know (of these five people here) who was present and who was absent.

A: John was present, and Mary was present.

(10) Q: I need to know (of these five people here) who was present and who was absent.

A: John was present, and Mary was present.

Q: Wow, only two?! That's disappointing!

(10) Q: I need to know (of these five people here) who was present and who was absent.

A: John was present, and Mary was present.

Q: Wow, only two?! That's disappointing!

Let us assume that:

exhaustivity indeed occurs;

(10) Q: I need to know (of these five people here) who was present and who was absent.

A: John was present, and Mary was present.

Q: Wow, only two?! That's disappointing!

Let us assume that:

- exhaustivity indeed occurs; and
- the symmetry cannot be broken by brevity/complexity.

(10) Q: I need to know (of these five people here) who was present and who was absent.

A: John was present, and Mary was present.

Q: Wow, only two?! That's disappointing!

Let us assume that:

- exhaustivity indeed occurs; and
- the symmetry cannot be broken by brevity/complexity.

Starting point of solution:

relative to (10Q), (10A) will imply a contradiction;

(10) Q: I need to know (of these five people here) who was present and who was absent.

A: John was present, and Mary was present.

Q: Wow, only two?! That's disappointing!

Let us assume that:

- exhaustivity indeed occurs; and
- the symmetry cannot be broken by brevity/complexity.

- relative to (10Q), (10A) will imply a contradiction;
 - for basically any account of exhaustivity;

(10) Q: I need to know (of these five people here) who was present and who was absent.

A: John was present, and Mary was present.

Q: Wow, only two?! That's disappointing!

Let us assume that:

- exhaustivity indeed occurs; and
- the symmetry cannot be broken by brevity/complexity.

- relative to (10Q), (10A) will imply a contradiction;
 - for basically any account of exhaustivity;
- ▶ hence, (10A) cannot be cooperatively addressing (10Q);

(10) Q: I need to know (of these five people here) who was present and who was absent.

A: John was present, and Mary was present.

Q: Wow, only two?! That's disappointing!

Let us assume that:

- exhaustivity indeed occurs; and
- the symmetry cannot be broken by brevity/complexity.

- relative to (10Q), (10A) will imply a contradiction;
 - for basically any account of exhaustivity;
- ▶ hence, (10A) cannot be cooperatively addressing (10Q);
- it must be addressing some other question instead,

(10) Q: I need to know (of these five people here) who was present and who was absent.

A: John was present, and Mary was present.

Q: Wow, only two?! That's disappointing!

Let us assume that:

- exhaustivity indeed occurs; and
- the symmetry cannot be broken by brevity/complexity.

- relative to (10Q), (10A) will imply a contradiction;
 - for basically any account of exhaustivity;
- ▶ hence, (10A) cannot be cooperatively addressing (10Q);
- it must be addressing some other question instead,
- ▶ as part of a *strategy* for (10Q) (Roberts, 1996).

(10) Q: I need to know (of these five people here) who was present and who was absent.

A: John was present, and Mary was present.

Q: Wow, only two?! That's disappointing!

Let us assume that:

- exhaustivity indeed occurs; and
- the symmetry cannot be broken by brevity/complexity.

Starting point of solution:

- ▶ relative to (10Q), (10A) will imply a contradiction;
 - for basically any account of exhaustivity;
- ▶ hence, (10A) cannot be cooperatively addressing (10Q);
- ▶ it must be addressing some other question instead,
- ▶ as part of a *strategy* for (10Q) (Roberts, 1996).

Now what could this strategic question be?

(10) Q: I need to know (of these five people here) who was present and who was absent.

A: John was present, and Mary was present.

Q: Wow, only two?! That's disappointing!

Let us assume that:

- exhaustivity indeed occurs; and
- the symmetry cannot be broken by brevity/complexity.

Starting point of solution:

- relative to (10Q), (10A) will imply a contradiction;
 - for basically any account of exhaustivity;
- ▶ hence, (10A) cannot be cooperatively addressing (10Q);
- ▶ it must be addressing some other question instead,
- ▶ as part of a *strategy* for (10Q) (Roberts, 1996).

Now what could this strategic question be? and why?

(11) Q: I need to know (of these five people here) who was present and who was absent.

A: John was present, and Mary was present.

Q: Wow, only two?! That's disappointing!

Solution:

(11) Q: I need to know (of these five people here) who was present and who was absent.

A: John was present, and Mary was present.

Q: Wow, only two?! That's disappointing!

Solution:

- A split the prior question into:
 - (i) "Who was present?"
 - (ii) "Who was absent?"

(11) Q: I need to know (of these five people here) who was present and who was absent.

A: John was present, and Mary was present.

Q: Wow, only two?! That's disappointing!

Solution:

- A split the prior question into:
 - (i) "Who was present?"
 - (ii) "Who was absent?"

(cf. accent placement)

(11) Q: I need to know (of these five people here) who was present and who was absent.

A: John was present, and Mary was present.

Q: Wow, only two?! That's disappointing!

Solution:

- A split the prior question into:
 - (i) "Who was present?"
 - (ii) "Who was absent?"

(cf. accent placement)

enabling A to address only (i) explicitly,

(11) Q: I need to know (of these five people here) who was present and who was absent.

A: John was present, and Mary was present.

Q: Wow, only two?! That's disappointing!

Solution:

- A split the prior question into:
 - (i) "Who was present?"
 - (ii) "Who was absent?"

(cf. accent placement)

- enabling A to address only (i) explicitly,
- and (ii) by means of exhaustivity implicature.

(11) Q: I need to know (of these five people here) who was present and who was absent.

A: John was present, and Mary was present.

Q: Wow, only two?! That's disappointing!

Solution:

- A split the prior question into:
 - (i) "Who was present?"
 - (ii) "Who was absent?"

(cf. accent placement)

- enabling A to address only (i) explicitly,
- and (ii) by means of exhaustivity implicature.

Brevity plays a role after all!

(11) Q: I need to know (of these five people here) who was present and who was absent.

A: John was present, and Mary was present.

Q: Wow, only two?! That's disappointing!

Solution:

- A split the prior question into:
 - (i) "Who was present?"
 - (ii) "Who was absent?"

(cf. accent placement)

- enabling A to address only (i) explicitly,
- and (ii) by means of exhaustivity implicature.

Brevity plays a role after all!

In sum: the symmetry problem solves the symmetry problem.

Outline

- 1. "Destructive" problems (A,B,C)
- 2. "Constructive" problems (D,E)
- 3. Formal, attention-based account

4. Discussion

Questions lack a main informational intent for I-Quantity to apply to:

Questions lack a main informational intent for I-Quantity to apply to:

(12) Was John there, or Mary?

(Exh.: not both, and no one else that's relevant)

Questions lack a main informational intent for I-Quantity to apply to:

(12) Was John there, or Mary?

(Exh.: not both, and no one else that's relevant)

Towards a new account:

Questions do serve to draw attention to things;

Questions lack a main informational intent for I-Quantity to apply to:

(12) Was John there, or Mary?

(Exh.: not both, and no one else that's relevant)

Towards a new account:

- Questions do serve to draw attention to things;
 - cf. Biezma and Rawlins, 2012.

Questions lack a main informational intent for I-Quantity to apply to:

(12) Was John there, or Mary?

(Exh.: not both, and no one else that's relevant)

Towards a new account:

- Questions do serve to draw attention to things;
 - cf. Biezma and Rawlins, 2012.
- hence a maxim of "A-Quantity" might do the trick...

Questions lack a main informational intent for I-Quantity to apply to:

(12) Was John there, or Mary?

(Exh.: not both, and no one else that's relevant)

Towards a new account:

- Questions do serve to draw attention to things;
 - cf. Biezma and Rawlins, 2012.
- hence a maxim of "A-Quantity" might do the trick...
 - ► **A-Quantity:** draw attention to all relevant possibilities.

Questions lack a main informational intent for I-Quantity to apply to:

(12) Was John there, or Mary?

(Exh.: not both, and no one else that's relevant)

Towards a new account:

- Questions do serve to draw attention to things;
 - cf. Biezma and Rawlins, 2012.
- ▶ hence a maxim of "A-Quantity" might do the trick...
 - ► **A-Quantity:** draw attention to all relevant possibilities.

(Discuss: is exh. on questions and assertions the same phenomenon?)

2.2. Problem E: informationally equivalent utterances [...]

Utterances with (supposedly) the same main informational intent can yield different exhaustivity implications:

2.2. Problem E: informationally equivalent utterances [...]

Utterances with (supposedly) the same main informational intent can yield different exhaustivity implications:

- (13) Who (of John, Mary and Bill) was at the party?
 - a. John. (Exh.: not Mary or Bill.)
 - b. John, or both John and Mary. (Exh.: not Bill.)

2.2. Problem E: informationally equivalent utterances [...]

Utterances with (supposedly) the same main informational intent can yield different exhaustivity implications:

(13) Who (of John, Mary and Bill) was at the party?

a. John. (Exh.: not Mary or Bill.)

b. John, or both John and Mary. (Exh.: not Bill.)

c. John, or everyone. (Exh.: if Mary/Bill, then everyone.)

Utterances with (supposedly) the same main informational intent can yield different exhaustivity implications:

(13) Who (of John, Mary and Bill) was at the party?

```
a. John. (Exh.: not Mary or Bill.)
```

- b. John, or both John and Mary. (Exh.: not Bill.)
- c. John, or everyone. (Exh.: if Mary/Bill, then everyone.)

Towards a solution: (13a,b,c) are attentionally distinct...

Utterances with (supposedly) the same main informational intent can yield different exhaustivity implications:

(13) Who (of John, Mary and Bill) was at the party?

```
a. John. (Exh.: not Mary or Bill.)
```

- b. John, or both John and Mary. (Exh.: not Bill.)
- c. John, or everyone. (Exh.: if Mary/Bill, then everyone.)

Towards a solution: (13a,b,c) are attentionally distinct...

building on Ciardelli et al. 2009.

Utterances with (supposedly) the same main informational intent can yield different exhaustivity implications:

(13) Who (of John, Mary and Bill) was at the party?

```
a. John. (Exh.: not Mary or Bill.)
```

- b. John, or both John and Mary. (Exh.: not Bill.)
- c. John, or everyone. (Exh.: if Mary/Bill, then everyone.)

Towards a solution: (13a,b,c) are attentionally distinct...

building on Ciardelli et al. 2009.

in a way that "A-Quantity" may be sensitive to.

Utterances with (supposedly) the same main informational intent can yield different exhaustivity implications:

- (13) Who (of John, Mary and Bill) was at the party?
 - a. John. (Exh.: not Mary or Bill.)
 - b. John, or both John and Mary. (Exh.: not Bill.)
 - c. John, or everyone. (Exh.: if Mary/Bill, then everyone.)

Towards a solution: (13a,b,c) are attentionally distinct...

building on Ciardelli et al. 2009.

in a way that "A-Quantity" may be sensitive to.

(Comparison:

▶ Hamblin, Aloni '06, Van Rooij and Schulz '06, Alonso-Ovalle '6.

Utterances with (supposedly) the same main informational intent can yield different exhaustivity implications:

- (13) Who (of John, Mary and Bill) was at the party?
 - a. John. (Exh.: not Mary or Bill.)
 - b. John, or both John and Mary. (Exh.: not Bill.)
 - c. John, or everyone. (Exh.: if Mary/Bill, then everyone.)

Towards a solution: (13a,b,c) are attentionally distinct...

building on Ciardelli et al. 2009.

in a way that "A-Quantity" may be sensitive to.

(Comparison:

- ► Hamblin, Aloni '06, Van Rooij and Schulz '06, Alonso-Ovalle '6.
- Hurford 1974; Katzir & Singh 2013.)

Problems:

- A. Exhaustivity without a competence assumption;
- B. Exhaustivity without I-Quantity (quiz);
- C. The symmetry problem;
- D. Exhaustivity without informational intent;
- E. Informationally equivalent utterances may yield different exh.

Problems:

- A. Exhaustivity without a competence assumption;
- B. Exhaustivity without I-Quantity (quiz);
- C. The symmetry problem;
- D. Exhaustivity without informational intent;
- E. Informationally equivalent utterances may yield different exh.

Problems:

- A. Exhaustivity without a competence assumption;
- B. Exhaustivity without I-Quantity (quiz);
- C. The symmetry problem;
- D. Exhaustivity without informational intent;
- E. Informationally equivalent utterances may yield different exh.

Solutions:

solution to A is not quite clear yet;

Problems:

- A. Exhaustivity without a competence assumption;
- B. Exhaustivity without I-Quantity (quiz);
- C. The symmetry problem;
- D. Exhaustivity without informational intent;
- E. Informationally equivalent utterances may yield different exh.

- solution to A is not quite clear yet;
- B can be solved by any account bypassing I-Quantity;

Problems:

- A. Exhaustivity without a competence assumption;
- B. Exhaustivity without I-Quantity (quiz);
- C. The symmetry problem;
- D. Exhaustivity without informational intent;
- E. Informationally equivalent utterances may yield different exh.

- solution to A is not quite clear yet;
- B can be solved by any account bypassing I-Quantity;
- C solves itself, given Roberts's strategies;

Problems:

- A. Exhaustivity without a competence assumption;
- B. Exhaustivity without I-Quantity (quiz);
- C. The symmetry problem;
- D. Exhaustivity without informational intent;
- E. Informationally equivalent utterances may yield different exh.

- solution to A is not quite clear yet;
- B can be solved by any account bypassing I-Quantity;
- C solves itself, given Roberts's strategies;
- ▶ D and E point to a new recipe based on A-Quantity.

Outline

- 1. "Destructive" problems (A,B,C)
- 2. "Constructive" problems (D,E)

- 3. Formal, attention-based account
- 4. Discussion

I-maxims: For an informational intent p and a $\mathrm{QUD}\ \mathcal{Q}$:

I-maxims: For an informational intent p and a QUD Q:

$$\operatorname{I-Quality}(p) = \square^{\vee} p$$

I-maxims: For an informational intent p and a $\mathrm{QUD}\ \mathcal{Q}$:

$$\operatorname{I-Quality}(p) = \square^{\vee} p$$

$$\text{I-Relation}(\mathcal{Q},p)=\mathcal{Q}(p)$$

I-maxims: For an informational intent p and a $\mathrm{QUD}\ \mathcal{Q}$:

$$\begin{split} &\mathsf{I-Quality}(p) = \Box^{\vee} p \\ &\mathsf{I-Relation}(\mathcal{Q},p) = \mathcal{Q}(p) \\ &\mathsf{I-Quantity}(\mathcal{Q},p) = \forall q \bigg(\!\!\! \begin{pmatrix} \mathsf{I-Quality}(q) \land \\ \mathsf{I-Relation}(\mathcal{Q},q) \end{pmatrix} \to (p \subseteq q) \!\!\! \bigg) \end{split}$$

I-maxims: For an informational intent p and a $QUD \mathcal{Q}$:

$$\begin{split} & \text{I-Quality}(p) = \Box^{\vee} p \\ & \text{I-Relation}(\mathcal{Q}, p) = \mathcal{Q}(p) \\ & \text{I-Quantity}(\mathcal{Q}, p) = \forall q \bigg(\begin{pmatrix} \text{I-Quality}(q) \land \\ \text{I-Relation}(\mathcal{Q}, q) \end{pmatrix} \rightarrow (p \subseteq q) \bigg) \end{split}$$

Alternative, equivalent formulation of I-Quantity:

$$\mathsf{I-Quantity}(\mathcal{Q},p) = \forall q \left(\left(\mathcal{Q}(q) \land p \not\subseteq q \right) \to \neg \Box^{\vee} q \right)$$

I-maxims: For an informational intent p and a $\mathrm{QUD}\ \mathcal{Q}$:

$$\begin{split} & \text{I-Quality}(p) = \Box^{\vee} p \\ & \text{I-Relation}(\mathcal{Q}, p) = \mathcal{Q}(p) \\ & \text{I-Quantity}(\mathcal{Q}, p) = \forall q \bigg(\begin{pmatrix} \text{I-Quality}(q) \land \\ \text{I-Relation}(\mathcal{Q}, q) \end{pmatrix} \rightarrow (p \subseteq q) \bigg) \end{split}$$

Alternative, equivalent formulation of I-Quantity:

$$\mathsf{I-Quantity}(\mathcal{Q},p) = \forall q \left(\left(\mathcal{Q}(q) \land p \not\subseteq q \right) \to \neg \Box^{\vee} q \right)$$

The starting point for the standard recipe.

A-maxims: For an attentional intent \mathcal{A} and a $\mathrm{QUD}\ \mathcal{Q}$:

 $\mathsf{A}\text{-}\mathsf{Quality}(\mathcal{Q},\mathcal{A})$

 $\mathsf{A}\text{-}\mathsf{Relation}(\mathcal{Q},\mathcal{A})$

 $\mathsf{A}\text{-}\mathsf{Quantity}(\mathcal{Q},\mathcal{A})$

A-maxims: For an attentional intent \mathcal{A} and a QUD \mathcal{Q} :

$$\mathsf{A}\text{-}\mathsf{Quality}(\mathcal{Q},\mathcal{A}) = \forall a \, (\mathcal{A}(a) \to \lozenge^{\vee} a) \qquad \qquad \textit{(first attempt)}$$

 $\mathsf{A}\text{-}\mathsf{Relation}(\mathcal{Q},\mathcal{A})$

 $\mathsf{A}\text{-}\mathsf{Quantity}(\mathcal{Q},\mathcal{A})$

A-maxims: For an attentional intent \mathcal{A} and a QUD \mathcal{Q} :

$$\mathsf{A}\text{-}\mathsf{Quality}(\mathcal{Q},\mathcal{A}) = \forall a \, (\mathcal{A}(a) \to \lozenge^{\vee} a) \qquad \qquad \textit{(first attempt)}$$

$$\mathsf{A\text{-}Relation}(\mathcal{Q},\mathcal{A}) = \forall \mathit{a}(\mathcal{A}(\mathit{a}) \rightarrow \mathcal{Q}(\mathit{a}))$$

$$\mathsf{A}\text{-}\mathsf{Quantity}(\mathcal{Q},\mathcal{A})$$

A-maxims: For an attentional intent \mathcal{A} and a QUD \mathcal{Q} :

$$\begin{split} \mathsf{A-Quality}(\mathcal{Q},\mathcal{A}) &= \forall a \, (\mathcal{A}(a) \to \lozenge^{\vee} a) \qquad \qquad \textit{(first attempt)} \\ \mathsf{A-Relation}(\mathcal{Q},\mathcal{A}) &= \forall a (\mathcal{A}(a) \to \mathcal{Q}(a)) \\ \mathsf{A-Quality}(\mathcal{Q},\mathcal{A}) &= \forall a \left(\begin{pmatrix} \mathsf{A-Quality}(\{a\}) \, \land \\ \mathsf{A-Relation}(\mathcal{Q},\{a\}) \end{pmatrix} \to \mathcal{A}(a) \right) \end{split}$$

A-maxims: For an attentional intent \mathcal{A} and a QUD \mathcal{Q} :

$$\begin{aligned} &\mathsf{A}\text{-}\mathsf{Quality}(\mathcal{Q},\mathcal{A}) = \forall a \, (\mathcal{A}(a) \to \lozenge^{\vee} a) & \textit{(first attempt)} \\ &\mathsf{A}\text{-}\mathsf{Relation}(\mathcal{Q},\mathcal{A}) = \forall a (\mathcal{A}(a) \to \mathcal{Q}(a)) \\ &\mathsf{A}\text{-}\mathsf{Quantity}(\mathcal{Q},\mathcal{A}) = \forall a \bigg(\begin{pmatrix} \mathsf{A}\text{-}\mathsf{Quality}(\{a\}) \, \land \\ \mathsf{A}\text{-}\mathsf{Relation}(\mathcal{Q},\{a\}) \end{pmatrix} \to \mathcal{A}(a) \bigg) \end{aligned}$$

Alternative, equivalent formulation of A-Quantity:

$$\mathsf{A}\text{-}\mathsf{Quantity}(\mathcal{Q},\mathcal{A}) = \forall a \, ((\mathcal{Q}(a) \land \neg \mathcal{A}(a)) \to \neg \lozenge^{\vee} a)$$

A-maxims: For an attentional intent \mathcal{A} and a QUD \mathcal{Q} :

$$\begin{aligned} \mathsf{A-Quality}(\mathcal{Q},\mathcal{A}) &= \forall a \, (\mathcal{A}(a) \to \lozenge^{\vee} a) & \textit{(first attempt)} \\ \mathsf{A-Relation}(\mathcal{Q},\mathcal{A}) &= \forall a (\mathcal{A}(a) \to \mathcal{Q}(a)) \\ \mathsf{A-Quantity}(\mathcal{Q},\mathcal{A}) &= \forall a \bigg(\begin{pmatrix} \mathsf{A-Quality}(\{a\}) \, \land \\ \mathsf{A-Relation}(\mathcal{Q},\{a\}) \end{pmatrix} \to \mathcal{A}(a) \bigg) \end{aligned}$$

Alternative, equivalent formulation of A-Quantity:

$$\mathsf{A}\text{-}\mathsf{Quantity}(\mathcal{Q},\mathcal{A}) = \forall a \, ((\mathcal{Q}(a) \land \neg \mathcal{A}(a)) \to \Box \neg^{\vee} a)$$

A-maxims: For an attentional intent \mathcal{A} and a QUD \mathcal{Q} :

$$\begin{aligned} &\mathsf{A}\text{-}\mathsf{Quality}(\mathcal{Q},\mathcal{A}) = \forall a \, (\mathcal{A}(a) \to \lozenge^{\vee} a) & \textit{(first attempt)} \\ &\mathsf{A}\text{-}\mathsf{Relation}(\mathcal{Q},\mathcal{A}) = \forall a (\mathcal{A}(a) \to \mathcal{Q}(a)) \\ &\mathsf{A}\text{-}\mathsf{Quantity}(\mathcal{Q},\mathcal{A}) = \forall a \left(\begin{pmatrix} \mathsf{A}\text{-}\mathsf{Quality}(\{a\}) \, \land \\ \mathsf{A}\text{-}\mathsf{Relation}(\mathcal{Q},\{a\}) \end{pmatrix} \to \mathcal{A}(a) \right) \end{aligned}$$

Alternative, equivalent formulation of A-Quantity:

$$\mathsf{A}\text{-}\mathsf{Quantity}(\mathcal{Q},\mathcal{A}) = \forall a \left(\left(\mathcal{Q}(a) \land \neg \mathcal{A}(a) \right) \to \Box \neg^{\vee} a \right)$$

Not quite right, e.g.:

A-maxims: For an attentional intent \mathcal{A} and a $\mathrm{QUD}\ \mathcal{Q}$:

$$\begin{aligned} &\mathsf{A}\text{-}\mathsf{Quality}(\mathcal{Q},\mathcal{A}) = \forall a \, (\mathcal{A}(a) \to \lozenge^{\mathsf{v}} a) \\ &\mathsf{A}\text{-}\mathsf{Relation}(\mathcal{Q},\mathcal{A}) = \forall a (\mathcal{A}(a) \to \mathcal{Q}(a)) \\ &\mathsf{A}\text{-}\mathsf{Quantity}(\mathcal{Q},\mathcal{A}) = \forall a \bigg(\left(\begin{array}{c} \mathsf{A}\text{-}\mathsf{Quality}(\{a\}) \, \land \\ \mathsf{A}\text{-}\mathsf{Relation}(\mathcal{Q},\{a\}) \end{array} \right) \to \mathcal{A}(a) \bigg) \end{aligned}$$

Alternative, equivalent formulation of A-Quantity:

$$\mathsf{A}\text{-}\mathsf{Quantity}(\mathcal{Q},\mathcal{A}) = \forall a \, ((\mathcal{Q}(a) \land \neg \mathcal{A}(a)) \to \Box \neg^{\vee} a)$$

Not quite right, e.g.:

A-maxims: For an attentional intent \mathcal{A} and a QUD \mathcal{Q} :

$$\begin{aligned} &\mathsf{A-Quality}(\mathcal{Q},\mathcal{A}) = \forall a \, (\mathcal{A}(a) \to \Diamond \textcolor{red}{(}^{\vee} a \\ &\mathsf{A-Relation}(\mathcal{Q},\mathcal{A}) = \forall a (\mathcal{A}(a) \to \mathcal{Q}(a)) \\ &\mathsf{A-Quantity}(\mathcal{Q},\mathcal{A}) = \forall a \begin{pmatrix} \mathsf{A-Quality}(\{a\}) \land \\ \mathsf{A-Relation}(\mathcal{Q},\{a\}) \end{pmatrix} \to \mathcal{A}(a) \end{pmatrix} \end{aligned}$$

Alternative, equivalent formulation of A-Quantity:

$$\mathsf{A}\text{-}\mathsf{Quantity}(\mathcal{Q},\mathcal{A}) = \forall a \, ((\mathcal{Q}(a) \land \neg \mathcal{A}(a)) \to \Box \neg^{\vee} a)$$

Not quite right, e.g.:

A-maxims: For an attentional intent \mathcal{A} and a QUD \mathcal{Q} :

$$\begin{aligned} &\mathsf{A}\text{-}\mathsf{Quality}(\mathcal{Q},\mathcal{A}) = \forall a \, (\mathcal{A}(a) \to \Diamond(\begin{subarray}{c} a \, \land \, \forall \, b \, ((\mathcal{Q}(b) \, \land \, b \, \subset \, a) \to \neg^{\vee} \, b))) \\ &\mathsf{A}\text{-}\mathsf{Relation}(\mathcal{Q},\mathcal{A}) = \forall \, a \, (\mathcal{A}(a) \to \mathcal{Q}(a)) \\ &\mathsf{A}\text{-}\mathsf{Quality}(\{a\}) \, \land \\ &\mathsf{A}\text{-}\mathsf{Relation}(\mathcal{Q},\{a\}) \, \end{pmatrix} \to \mathcal{A}(a) \end{aligned}$$

Alternative, equivalent formulation of A-Quantity:

$$\mathsf{A}\text{-}\mathsf{Quantity}(\mathcal{Q},\mathcal{A}) = \forall a \, ((\mathcal{Q}(a) \land \neg \mathcal{A}(a)) \to \Box \neg^\vee a)$$

Not quite right, e.g.:

A-maxims: For an attentional intent \mathcal{A} and a QUD \mathcal{Q} :

$$\begin{aligned} &\mathsf{A}\text{-}\mathsf{Quality}(\mathcal{Q},\mathcal{A}) = \forall a \, (\mathcal{A}(a) \to \Diamond({}^{\vee}a \wedge \forall b \, ((\mathcal{Q}(b) \wedge b \subset a) \to \neg{}^{\vee}b))) \\ &\mathsf{A}\text{-}\mathsf{Relation}(\mathcal{Q},\mathcal{A}) = \forall a (\mathcal{A}(a) \to \mathcal{Q}(a)) \\ &\mathsf{A}\text{-}\mathsf{Quantity}(\mathcal{Q},\mathcal{A}) = \forall a \begin{pmatrix} \mathsf{A}\text{-}\mathsf{Quality}(\{a\}) \wedge \\ \mathsf{A}\text{-}\mathsf{Relation}(\mathcal{Q},\{a\}) \end{pmatrix} \to \mathcal{A}(a) \end{pmatrix} \end{aligned}$$

Alternative, equivalent formulation of A-Quantity:

$$\mathsf{A}\text{-}\mathsf{Quantity}(\mathcal{Q},\mathcal{A}) = \forall a \begin{pmatrix} (\mathcal{Q}(a) \land \neg \mathcal{A}(a)) \to \\ \neg^{\lor} a \end{pmatrix}$$

Not quite right, e.g.:

A-maxims: For an attentional intent \mathcal{A} and a QUD \mathcal{Q} :

$$\begin{aligned} &\mathsf{A}\text{-}\mathsf{Quality}(\mathcal{Q},\mathcal{A}) = \forall a \, (\mathcal{A}(a) \to \Diamond({}^{\vee}a \wedge \forall b \, ((\mathcal{Q}(b) \wedge b \subset a) \to \neg{}^{\vee}b))) \\ &\mathsf{A}\text{-}\mathsf{Relation}(\mathcal{Q},\mathcal{A}) = \forall a (\mathcal{A}(a) \to \mathcal{Q}(a)) \\ &\mathsf{A}\text{-}\mathsf{Quantity}(\mathcal{Q},\mathcal{A}) = \forall a \begin{pmatrix} \mathsf{A}\text{-}\mathsf{Quality}(\{a\}) \wedge \\ \mathsf{A}\text{-}\mathsf{Relation}(\mathcal{Q},\{a\}) \end{pmatrix} \to \mathcal{A}(a) \end{pmatrix} \end{aligned}$$

Alternative, equivalent formulation of A-Quantity:

$$\mathsf{A}\text{-Quantity}(\mathcal{Q},\mathcal{A}) = \forall a \begin{pmatrix} (\mathcal{Q}(a) \land \neg \mathcal{A}(a)) \to \\ \neg^{\vee} a \lor \\ \exists b (\mathcal{A}(b) \land (b \subset a) \land^{\vee} b) \end{pmatrix}$$

Not quite right, e.g.:

A-maxims: For an attentional intent \mathcal{A} and a QUD \mathcal{Q} :

$$\begin{aligned} &\mathsf{A}\text{-}\mathsf{Quality}(\mathcal{Q},\mathcal{A}) = \forall a \, (\mathcal{A}(a) \to \Diamond({}^{\vee}a \wedge \forall \, b \, ((\mathcal{Q}(b) \wedge \, b \, \subset \, a) \to \neg^{\vee}b))) \\ &\mathsf{A}\text{-}\mathsf{Relation}(\mathcal{Q},\mathcal{A}) = \forall a (\mathcal{A}(a) \to \mathcal{Q}(a)) \\ &\mathsf{A}\text{-}\mathsf{Quantity}(\mathcal{Q},\mathcal{A}) = \forall a \begin{pmatrix} \mathsf{A}\text{-}\mathsf{Quality}(\{a\}) \wedge \\ \mathsf{A}\text{-}\mathsf{Relation}(\mathcal{Q},\{a\}) \end{pmatrix} \to \mathcal{A}(a) \end{pmatrix} \end{aligned}$$

Alternative, equivalent formulation of A-Quantity:

$$\mathsf{A}\text{-Quantity}(\mathcal{Q},\mathcal{A}) = \forall a \begin{pmatrix} (\mathcal{Q}(a) \land \neg \mathcal{A}(a)) \to \\ \neg^{\lor} a \lor \\ \exists \beta (\mathcal{A}(b) \land (b \subset a) \land {}^{\lor} b) \end{pmatrix}$$

Better:

```
(13) a. John. (Exh.: not Mary or Bill.)
b. John, or both John and Mary. (Exh.: not Bill.)
c. John, or everyone. (Exh.: if Mary/Bill, then everyone.)
```

```
(13) a. John. (Exh.: not Mary or Bill.)
b. John, or both John and Mary. (Exh.: not Bill.)
c. John, or everyone. (Exh.: if Mary/Bill, then everyone.)
Let Q = {^Pj, ^Pm, ^Pb, ...} (closed under intersection)
```

(13) a. John. (Exh.: not Mary or Bill.)
b. John, or both John and Mary. (Exh.: not Bill.)
c. John, or everyone. (Exh.: if Mary/Bill, then everyone.)

Let $Q = {^{\land}Pj, ^{\land}Pm, ^{\land}Pb, \ldots}$ (closed under intersection)

(13) a. John. (Exh.: not Mary or Bill.)

b. John, or both John and Mary. (Exh.: not Bill.)

c. John, or everyone. (Exh.: if Mary/Bill, then everyone.)

Let $Q = {^{\land}Pj, ^{\land}Pm, ^{\land}Pb, \ldots}$ (closed under intersection), and:

• (13a): $A = {^{\land}Pj};$

(13) a. John. (Exh.: not Mary or Bill.)

b. John, or both John and Mary. (Exh.: not Bill.)

c. John, or everyone. (Exh.: if Mary/Bill, then everyone.)

Let $Q = {^{\land}Pj, ^{\land}Pm, ^{\land}Pb, \ldots}$ (closed under intersection)

• (13a): $A = {^{\land}Pj};$

• (13b): $\mathcal{A} = \{^{\wedge}Pj, ^{\wedge}(Pj \wedge Pm)\};$

- (13) a. John. (Exh.: not Mary or Bill.)
 - b. John, or both John and Mary. (Exh.: not Bill.)
 - c. John, or everyone. (Exh.: if Mary/Bill, then everyone.)

Let $Q = {^{\land}Pj, ^{\land}Pm, ^{\land}Pb, \ldots}$ (closed under intersection)

- (13a): $A = {^{\land}Pj};$
- $\qquad \qquad \bullet \quad \text{(13b): } \mathcal{A} = \{^{\wedge}Pj, ^{\wedge}(Pj \wedge Pm)\};$

(13) a. John. (Exh.: not Mary or Bill.)

b. John, or both John and Mary. (Exh.: not Bill.)

(Exh.: if Mary/Bill, then everyone.) c. John, or everyone.

Let $Q = {^{\land}Pj, ^{\land}Pm, ^{\land}Pb, ...}$ (closed under intersection)

• (13a): $A = {^{\land}P_i}$;

• (13b): $A = \{^{\land}Pj, ^{\land}(Pj \land Pm)\};$

 $(13c): \mathcal{A} = {^{\wedge}Pj, ^{\wedge}(Pj \wedge Pm \wedge Pb)}.$

(13) a. John. (Exh.: not Mary or Bill.)

b. John, or both John and Mary. (Exh.: not Bill.)

(Exh.: if Mary/Bill, then everyone.) c. John, or everyone.

Let $Q = {^{\land}Pj, ^{\land}Pm, ^{\land}Pb, ...}$ (closed under intersection)

• (13a): $A = {^{\land}P_i}$;

• (13b): $A = \{^{\land}Pj, ^{\land}(Pj \land Pm)\};$

• (13c): $A = {^{\land}Pj, ^{\land}(Pj \land Pm \land Pb)}.$

- (13) a. John. (Exh.: not Mary or Bill.)
 - b. John, or both John and Mary. (Exh.: not Bill.)
 - c. John, or everyone. (Exh.: if Mary/Bill, then everyone.)

Let $Q = {^{\land}Pj, ^{\land}Pm, ^{\land}Pb, ...}$ (closed under intersection)

- (13a): $A = {^{\land}Pj};$
- $\qquad \qquad \bullet \quad \text{(13b): } \mathcal{A} = \{^{\wedge}Pj, ^{\wedge}(Pj \wedge Pm)\};$
- $(13c): A = {^{\wedge}Pj, ^{\wedge}(Pj \wedge Pm \wedge Pb)}.$

Repeated:

$$\operatorname{\mathsf{A-Quantity}}(\mathcal{Q},\mathcal{A}) = \forall a \begin{pmatrix} (\mathcal{Q}(a) \land \neg \mathcal{A}(a)) \to \\ \neg^{\vee} a \lor \\ \exists \mathit{b}(\mathcal{A}(\mathit{b}) \land (\mathit{b} \subset a) \land^{\vee} \mathit{b}) \end{pmatrix}$$

Repeated:

$$\mathsf{A-Quantity}(\mathcal{Q},\mathcal{A}) = \forall a \begin{pmatrix} (\mathcal{Q}(a) \land \neg \mathcal{A}(a)) \to \\ \neg^{\vee} a \lor \\ \exists \mathscr{b}(\mathcal{A}(\mathscr{b}) \land (\mathscr{b} \subset a) \land^{\vee} \mathscr{b}) \end{pmatrix}$$

Repeated:

$$\mathsf{A}\text{-}\mathsf{Quantity}(\mathcal{Q},\mathcal{A}) = \forall a \begin{pmatrix} (\mathcal{Q}(a) \land \neg \mathcal{A}(a)) \to \\ \neg^{\lor} a \lor \\ \exists b (\mathcal{A}(b) \land (b \subset a) \land {}^{\lor} b) \end{pmatrix}$$

$$\mathrm{Exh}(\mathcal{Q},\mathcal{A}) = {}^{\wedge}\forall a \left(\begin{array}{c} (\mathcal{Q}(a) \wedge \neg \mathcal{A}(a)) \to \\ (\neg^{\vee} a \vee \exists b (\mathcal{A}(b) \wedge (b \subset a) \wedge^{\vee} b)) \end{array} \right)$$

Repeated:

$$\mathsf{A}\text{-Quantity}(\mathcal{Q},\mathcal{A}) = \forall a \begin{pmatrix} (\mathcal{Q}(a) \land \neg \mathcal{A}(a)) \to \\ \neg^{\lor} a \lor \\ \exists \beta (\mathcal{A}(b) \land (b \subset a) \land {}^{\lor} b) \end{pmatrix}$$

$$\mathrm{Exh}(\mathcal{Q},\mathcal{A}) = {}^{\wedge}\forall a \left(\begin{matrix} (\mathcal{Q}(a) \wedge \neg \mathcal{A}(a)) \to \\ (\neg^{\vee} a \vee \exists b (\mathcal{A}(b) \wedge (b \subset a) \wedge^{\vee} b)) \end{matrix} \right)$$

Repeated:

$$\mathsf{A}\text{-Quantity}(\mathcal{Q},\mathcal{A}) = \forall a \begin{pmatrix} (\mathcal{Q}(a) \land \neg \mathcal{A}(a)) \to \\ \neg^{\lor} a \lor \\ \exists \mathit{b}(\mathcal{A}(\mathit{b}) \land (\mathit{b} \subset a) \land {}^{\lor} \mathit{b}) \end{pmatrix}$$

$$\mathrm{EXH}(\mathcal{Q},\mathcal{A}) = {}^{\wedge}\forall a \left(\begin{array}{c} (\mathcal{Q}(a) \wedge \neg \mathcal{A}(a)) \to \\ (\neg^{\vee} a \vee \exists b (\mathcal{A}(b) \wedge (b \subset a) \wedge^{\vee} b)) \end{array} \right)$$

Repeated:

$$\mathsf{A}\text{-Quantity}(\mathcal{Q},\mathcal{A}) = \forall a \begin{pmatrix} (\mathcal{Q}(a) \land \neg \mathcal{A}(a)) \to \\ \neg^{\lor} a \lor \\ \exists \beta (\mathcal{A}(b) \land (b \subset a) \land {}^{\lor} b) \end{pmatrix}$$

$$\mathrm{EXH}(\mathcal{Q},\mathcal{A}) = {}^{\wedge}\forall a \left(\frac{(\mathcal{Q}(a) \wedge \neg \mathcal{A}(a)) \rightarrow}{(\neg^{\vee} a \vee \exists b (\mathcal{A}(b) \wedge (b \subset a) \wedge^{\vee} b))} \right)$$

Repeated:

$$\mathsf{A}\text{-}\mathsf{Quantity}(\mathcal{Q},\mathcal{A}) = \forall a \begin{pmatrix} (\mathcal{Q}(a) \land \neg \mathcal{A}(a)) \to \\ \neg^{\lor} a \lor \\ \exists \beta (\mathcal{A}(b) \land (b \subset a) \land {}^{\lor} b) \end{pmatrix}$$

A convenient shorthand:

$$\mathrm{EXH}(\mathcal{Q},\mathcal{A}) = {}^{\wedge}\forall a \left(\begin{matrix} (\mathcal{Q}(a) \wedge \neg \mathcal{A}(a)) \to \\ (\neg^{\vee} a \vee \exists b (\mathcal{A}(b) \wedge (b \subset a) \wedge^{\vee} b)) \end{matrix} \right)$$

Alternative, equivalent definition:

$$\text{EXH}(\mathcal{Q}, \mathcal{A}) = \bigcap_{\substack{a \in \mathcal{Q} \\ a \notin \mathcal{A}}} (\overline{a} \cup \bigcup_{\substack{b \in \mathcal{A} \\ b \subset a}} b)$$

The basic idea (Van Rooij & Schulz 2006; Spector 2007):

- remove all worlds from the informational intent...
- ▶ in which the set of relevant true propositions isn't minimal.

The basic idea (Van Rooij & Schulz 2006; Spector 2007):

- remove all worlds from the informational intent...
- ▶ in which the set of relevant true propositions isn't minimal.
- Derivable from the standard recipe.

The basic idea (Van Rooij & Schulz 2006; Spector 2007):

- remove all worlds from the informational intent...
- ▶ in which the set of relevant true propositions isn't minimal.
- ▶ Derivable from the standard recipe.

```
 \begin{split} \llbracket \mathrm{Exh}_{\mathsf{mw}}(p,\mathcal{Q}) \rrbracket &= \{ w \in \llbracket p \rrbracket \mid \mathsf{there is no } w' \in \llbracket p \rrbracket \mathsf{ such that: } \\ \{ W' \in \llbracket \mathcal{Q} \rrbracket \mid w' \in W' \} \subset \{ W' \in \llbracket \mathcal{Q} \rrbracket \mid w \in W' \} \} \end{split}
```

The basic idea (Van Rooij & Schulz 2006; Spector 2007):

- remove all worlds from the informational intent...
- ▶ in which the set of relevant true propositions isn't minimal.
- ▶ Derivable from the standard recipe.

Fact. For any admissible model \mathbf{M} where $\mathcal{A} = \{p\}$, and these intents can comply with the maxims relative to \mathcal{Q} :

$$\mathbf{M} \models \operatorname{Exh}_{\mathsf{mw}}(p, \mathcal{Q}) = p \cap \operatorname{Exh}(\mathcal{A}, \mathcal{Q})$$

The basic idea (Van Rooij & Schulz 2006; Spector 2007):

- remove all worlds from the informational intent...
- ▶ in which the set of relevant true propositions isn't minimal.
- ▶ Derivable from the standard recipe.

Fact. For any admissible model \mathbf{M} where $\mathcal{A} = \{p\}$, and these intents can comply with the maxims relative to \mathcal{Q} :

$$\mathbf{M} \models \mathrm{Exh}_{\mathsf{mw}}(p, \mathcal{Q}) = p \cap \mathrm{Exh}(\mathcal{A}, \mathcal{Q})$$

Thus:

▶ if attention doesn't really matter, my EXH is conservative;

The basic idea (Van Rooij & Schulz 2006; Spector 2007):

- remove all worlds from the informational intent...
- ▶ in which the set of relevant true propositions isn't minimal.
- ▶ Derivable from the standard recipe.

Fact. For any admissible model \mathbf{M} where $\mathcal{A} = \{p\}$, and these intents can comply with the maxims relative to \mathcal{Q} :

$$\mathbf{M} \models \mathrm{Exh}_{\mathsf{mw}}(p, \mathcal{Q}) = p \cap \mathrm{Exh}(\mathcal{A}, \mathcal{Q})$$

Thus:

- ▶ if attention doesn't really matter, my EXH is conservative;
- though only as a purely technical device;

The basic idea (Van Rooij & Schulz 2006; Spector 2007):

- remove all worlds from the informational intent...
- ▶ in which the set of relevant true propositions isn't minimal.
- ▶ Derivable from the standard recipe.

Fact. For any admissible model \mathbf{M} where $\mathcal{A} = \{p\}$, and these intents can comply with the maxims relative to \mathcal{Q} :

$$\mathbf{M} \models \mathrm{Exh}_{\mathsf{mw}}(p, \mathcal{Q}) = p \cap \mathrm{Exh}(\mathcal{A}, \mathcal{Q})$$

Thus:

- ▶ if attention doesn't really matter, my EXH is conservative;
- though only as a purely technical device;
- ▶ my account makes very different predictions (e.g., problems A, B, D

The basic idea (Van Rooij and Schulz 2006):

▶ like EXH_{mw}, but minimize only among world-assignment pairs that share the same assignment;

The basic idea (Van Rooij and Schulz 2006):

- ▶ like EXH_{mw}, but minimize only among world-assignment pairs that share the same assignment;
- not derived from a pragmatic theory.

The basic idea (Van Rooij and Schulz 2006):

- ▶ like EXH_{mw}, but minimize only among world-assignment pairs that share the same assignment;
- not derived from a pragmatic theory.

Simplifying somewhat:

```
\llbracket \operatorname{EXH}_{\mathsf{dyn}}(\mathcal{A}, \mathcal{Q}) \rrbracket = \{ w \mid \text{for some } W' \in \llbracket \mathcal{A} \rrbracket \colon w \in W' \text{ and there is no } w' \in W' \text{ s.t. } \{ W' \in \llbracket \mathcal{Q} \rrbracket \mid w' \in W' \} \subset \{ W' \in \llbracket \mathcal{Q} \rrbracket \mid w \in W' \} \}
```

The basic idea (Van Rooij and Schulz 2006):

- ▶ like Exh_{mw} , but minimize only among world-assignment pairs that share the same assignment;
- not derived from a pragmatic theory.

Simplifying somewhat:

$$\llbracket \operatorname{ExH}_{\operatorname{dyn}}(\mathcal{A}, \mathcal{Q}) \rrbracket = \{ w \mid \text{for some } W' \in \llbracket \mathcal{A} \rrbracket \colon w \in W' \text{ and there is no } w' \in W' \text{ s.t. } \{ W' \in \llbracket \mathcal{Q} \rrbracket \mid w' \in W' \} \subset \{ W' \in \llbracket \mathcal{Q} \rrbracket \mid w \in W' \} \}$$

For any admissible model \mathbf{M} s.t. $p = \bigcup \mathcal{A}$, \mathcal{Q} is closed under inters., and p and \mathcal{A} can comply with the maxims relative to \mathcal{Q} : $\mathbf{M} \models \mathrm{Exh}_{\mathsf{dyn}}(\mathcal{A},\mathcal{Q}) = (p \cap \mathrm{Exh}(\mathcal{A},\mathcal{Q}))$

The basic idea (Van Rooij and Schulz 2006):

- ▶ like Exh_{mw} , but minimize only among world-assignment pairs that share the same assignment;
- not derived from a pragmatic theory.

Simplifying somewhat:

```
 \llbracket \operatorname{ExH}_{\operatorname{dyn}}(\mathcal{A}, \mathcal{Q}) \rrbracket = \{ w \mid \text{for some } W' \in \llbracket \mathcal{A} \rrbracket \colon w \in W' \text{ and there is no } w' \in W' \text{ s.t. } \{ W' \in \llbracket \mathcal{Q} \rrbracket \mid w' \in W' \} \subset \{ W' \in \llbracket \mathcal{Q} \rrbracket \mid w \in W' \} \}
```

For any admissible model \mathbf{M} s.t. $p = \bigcup \mathcal{A}$, \mathcal{Q} is closed under inters., and p and \mathcal{A} can comply with the maxims relative to \mathcal{Q} : $\mathbf{M} \models \mathrm{Exh}_{\mathsf{dyn}}(\mathcal{A},\mathcal{Q}) = (p \cap \mathrm{Exh}(\mathcal{A},\mathcal{Q}))$

As technical devices our operators are very close, but again:

- explanatorily our accounts are very different;
- ▶ and empirically they make very different predictions.

Outline

- 1. "Destructive" problems (A,B,C)
- 2. "Constructive" problems (D,E)

- 3. Formal, attention-based account
- 4. Discussion

The standard recipe was wrong.

The standard recipe was wrong.

The standard recipe was wrong.

But an alternative pragmatic account is available:

speakers intentionally share attention;

The standard recipe was wrong.

- speakers intentionally share attention;
- governed by the A-maxims;

The standard recipe was wrong.

- speakers intentionally share attention;
- governed by the A-maxims;
- exhaustivity derives from A-Quantity:
 - "intend to draw attention to all relevant propositions that you consider possible independently of anything stronger to which you intend to draw attention."

The standard recipe was wrong.

- speakers intentionally share attention;
- governed by the A-maxims;
- exhaustivity derives from A-Quantity:
 - "intend to draw attention to all relevant propositions that you consider possible independently of anything stronger to which you intend to draw attention."
- the predicted implications are technically similar to the patterns described by (some) existing operators.

4.2. Is this what rationality looks like?

$$\begin{split} &\mathsf{I-Quality}(p) = \Box^{\vee} p \\ &\mathsf{I-Relation}(\mathcal{Q},p) = \mathcal{Q}(p) \\ &\mathsf{I-Quality}(\mathcal{Q},p) = \forall q \bigg(\begin{pmatrix} \mathsf{I-Quality}(q) \land \\ \mathsf{I-Relation}(\mathcal{Q},q) \end{pmatrix} \to (p \subseteq q) \bigg) \end{split}$$

$$\begin{aligned} &\mathsf{A}\text{-}\mathsf{Quality}(\mathcal{Q},\mathcal{A}) = \forall a \, (\mathcal{A}(a) \to \Diamond({}^{\vee}a \wedge \forall b \, ((\mathcal{Q}(b) \wedge b \subset a) \to \neg{}^{\vee}b))) \\ &\mathsf{A}\text{-}\mathsf{Relation}(\mathcal{Q},\mathcal{A}) = \forall a (\mathcal{A}(a) \to \mathcal{Q}(a)) \\ &\mathsf{A}\text{-}\mathsf{Quality}(\{a\}) \wedge \\ &\mathsf{A}\text{-}\mathsf{Relation}(\mathcal{Q},\{a\}) \end{pmatrix} \to \mathcal{A}(a) \end{aligned}$$

References

- Alonso-Ovalle, L. (2008). Innocent exclusion in an alternative semantics. Natural Lang. Sem. 16.
- Biezma, M., & Rawlins, K. (2012). Responding to alternative...
- ▶ Breheny, R., Ferguson, H., & Katsos, N. (2013). Taking the epistemic...
- Ciardelli, I., Groenendijk, J., & Roelofsen, F. (2009). Attention! [...]
- ▶ Chierchia, G., Fox, D., & Spector, B. (2012). The grammatical view [...].
- ► Fox, D. (2014). Cancelling the Maxim of Quantity: [...]. Sem&Prag.
- ▶ Goodman, N. and Stuhlmüller, A. (2013). Knowledge and implicature...
- ► Horn, L.R. (1989). A natural history of [...]. Uni. of Chicago.
- ► Katzir, R. & Singh, R. (2013). Hurford Disjunctions: [...]. SuB18.
- ▶ Roberts, C. (1996). Information structure [...]. OSU w.p. in ling. 49.
- ▶ Rosch, E. (1978). Principles of categorization. In Rosch & Lloyd (Eds.).
- ► Spector, B. (2016). Comparing exhaustivity operators. *Sem&Prag* 8.
- Spector, B. (2007). Scalar implicatures: Exhaustivity and Gricean [...]
 Questions in dyn. sem. (pp. 225–250).
- ▶ Van Rooij, R., & Schulz, K. (2006). Pragmatic meaning and [...]
- ▶ Westera, M. (2013). Exhaustivity through the maxim of Relation.
- Westera, M. (2013b). 'Attention, Im violating a maxim!' [...]